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to a finite limit en() as K increases. The dependence en (X) obtained by determining the
extremum of the function (5) is shownin Fig.2 by the dashed line. The relation is also non-
monotonic and has a minimum. When the dimensionless reaction rate constant X tends to zero,
the maximum value of the absolute magnitude of the charge on the particles |e,| obtained in
the flow, also always tends to zero.

Figs.3 and 4 show the dependence of the distance sn from the plane at which the charge
on the particles reaches the maximum value in modulus, and of the dimensionless potential
difference ¢m = ¢8nebrn’/(E) on the parameter 1/Rey for various values of N, where KX = oo. We

see that the quantity =, depends weakly on the parameters N,Repy and z,~1, and the presence

of the aerosol particles has a considerable effect on the relation g, (1/Reg) only when N>1
and Rep < 2.
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THE PROBLEM OF THE FILLING OF A LIMITED VOLUME BY A
VISCOUS HEAT-CONDUCTING GAS

S.YA. BELOV

A system of differential equations, the solution of which describes the one-dimensional
motion of a viscous heat-conducting ideal polytropic gas is investigated /1, 2/. It is proved
that the problem of the filling of a limited volume by a gas is uniquely solvable. B&An ex~-
istence theorem is established by the method of extending the solution that is local in time
using global a priori estimates. A method of obtaining these estimates was described in /2/
for the equations of a viscous gas described in Lagrangian variables., The presence of pen-
etrable walls meang that the boundary conditions are non-uniform, and in mass Lagrangian
variables the initial-boundary value problem is formulated in a region with curvilinear
boundaries. This requires the development of a technique for proving the estimates. The
correctness in time as a whole of the problem of the filling of a volume by a viscous gas has
only been investigated previously for the more simple models, and for the system of equations
of a heat-conducting gas in the case when the thermal conductivity depends in a special way
on the temperature /3, 4/. Other formulations of the problem of the flows of a viscous gas
in regions with penetrable boundaries were studied in /3-6/.

1. Formulation of the problem and fundamental results. The one-dimensional
motion of a viscous ideal polytropic gas in mass Lagrangian coordinates is described by the
following system of equations /1, 2/:
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Here wu,p,8,p are the velocity, density, absolute temperature, and pressure respectively -
the required characteristics of the medium, z is the mass Lagrangian variable, t is the time,
W, cp, 5 are the viscosity, specific heat capacity, and thermal conductivity - positive con-
stants, and R is the universal gas constant.

We will consider the motion of a viscous gas in a certain region of physical space, the
left~hand boundary of which is fixed and penetrable (the gas constantly flows through it), and
the right-hand boundary remains fixed, unpenetrable and thermally insulated. In a time 7,0<
T'< o this process can be described in Lagrangian variables by the solution of the system
of Egs.(1l.1l), which is defined in the region Q= {{z. 1 0 <t T, s( <z < X} and satisfies the
following conditions (X >>0 is the initial mass of the gas):

w=ug(z), p=1p,(z), 0=04() for t=0 z=Q {1.2)
w=w(t), p=p (), 6=0,@ for z=1s(@1), t=][0, T] (1.3)
a0
"“’“‘a’;“o for z =X, t=(0, T (1.4)
t
${t) = — Spl(t)ul(t)dr, Q=(0,X). Q ={s{t) X

4
In this case the following constraints are satisfied:
0 < mo < {Por Bos P15 4, By) < Mo <L 00 (1.5}
{m; and M, are arbitrary positive constants).
We will formulate the main result, using the idea of a generalized solution and the
symbols of functional spaces used in /2/.

Theorem 1. Suppose the given problems are such that
(o, B) &= CH(Q), g = CT*(Q), (wy, py, B) = CI2 (0, T), 0<a<t
satisfy the conditions for matching of the first order of the initial and boundary functions
and conditions {(1.5). Then a unique classical solution of problem {(l1.1)-(1.4) exists, which
has the properties
(.0, 0z, ) =T 1R {Q), palM @, 550,80

If these problems belong to a wider class
o, Poy 8 & Wyl (R), (wy, py, O)) & Wyt (0, T)

satisfy the condition for matching of zeroth order, and condition (1.5) is satisfied, then a
unique generalized solution exists such that the functions p and 9 are strictly positive and
bounded.

The existence of a unique classical solution over the whole time interval [0,7] can be
proved by extending the local solution using a priori estimates. After doing this, the
generalized soclution as a whole is cbtained as the limit, defined in @, of the classical
solutions of the problems, the smooth initial and boundary data of which approximate the
specified functions in the corresponding norms. The proof of the uniqueness of the generalized
solution does not differ from that given in /2/ for a uniform initial-boundary value problem.

2. A priori estimates. The constants which depend only on the data of problem (1.1}~
(1.4) and T, will be denoted by N (with a subscript).

Suppose the conditions of the first part of Theorem 1 are satisfied, and problem (1.1)-
(1.4) has a classical solution, where 0<{p<{oo, 008« o. Over a small time interval this is

guaranteed by the local existence theorem.
We will integrate the second equation of system (l.1), written in the form (p~), = u,, over
the region Q1= {{z,9): 0 {7« z)= Q). We obtain the following relation:

(ot@nae= {0l @az=n, vieto, 1) 21
QZ Q€

We substitute u=w-+u, p==ov1 into the equations of system (1.1}, where

X
walz, £ = ug (1) N‘lS o (E, 1) 48
x

and we multiply the first equation by u, the second by R6, (1 —v!), and the thixd by (1 — 807,
and we then integrate their sum over ¢;. After simple reduction, by estimating the right-
hand side of the relation obtained with respect to the Cauchy inequality, and using Gronwall's
lemma, we can obtain the estimate

max QS [8%(z, ) + (¥ (2, 1) — T w (2, 1) — D}dz < N, (2.2)
H
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which enables us to prove the following auxiliary assertion.

Lemma 1. The measured function a () is defined in the interval [0,T], such that 0 < a () <
X and
N Sp(e(n), ) <N, Vie|0, T] (2.3)
where N, and N; are the roots of the equation z—Inz—1= §,X1
We will denote by t=1t*(z), s(T) <z<0 the function that is the inverse =z = s (). Then
*(x)=0 1if 0gz<X. _
At any point (r,) =0, ={0<z < X,0< < T}, following /7/, we can obtain

where p@ =Y (0B (z,t, )7 (z, 1, 1) 2.4

t

Y@ tn=o@mortam, e eyt { pam, el
t*(x)

B(zt, r)=eXP{u“ {wEmE@—uE 0 dz}

a(r)
t

T (2, t,7) = g7t (2, 1 (2)) + 2R S 0(z, VY (z,1,7) B (z, T, 1) dv
t* (x)
are functions defined in ¢={(z,t, N0t T, s (<< X,0<<r< e}
At points of the curvilinear triangle Q= {(z,1): 0 <t T,s() <z <0} the following equations
hold:
p(z, ) =Y (2,8, 0B (z, t, 977 (z, 1, 1* (2)) 2.5)
pl, ) =Y (z, ¢, t* (2))B (z, t, t* (xDJ ! (=2, ¢, t* (2)) (2.6)

For an arbitrary function /(z ¢, continuous in @, we introduce the notation

my (t) = min fz,t), M, (t)= max f(z,1)
E=N xefy

By estimating the right-hand side of Eq. (2.4) from below and from above, and then the
right-hand side of (2.5) from below and the right-hand side of (2.6) from above, we obtain
the following assertion.

Lemma 2. For any te[0,7T] the following relations hold:

t
my () > No+ [1 + 8§ M () dr] LM, <Ny
0

After this all the estimates necessary to prove Theorem 1 are obtained using the scheme
described in /2/.

Note. 1In a similar way we can investigate the problem when both boundaries of the region
are penetrable and there is a flow of liquid through them.
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