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to a finite limit em twl as X increases. The dependence +(A? obtained by determining the 
extremum of the function (5) is showninFig.2 by the dashed line. The relation is also non- 
monotonic and has a minimum. When the dimensionless reaction rate constant K tends to zero, 
the maximum value of the absolute magnitude of the charge on the particles Ie, 1 obtained in 
theflow,also always tends to zero. 

Figs.3 and 4 show the dependence of the distance xTIL from the plane at which the charge 
on the particles reaches the maximum value in modulus , and of the dimensionless potential 
difference Q,= rp8nebn0/(uE) on the parameter llRer for various values of N, where K= w. We 

see that the quantity z,,, depends weakly on the parameters N,Re, and x,*-1, and the presence 

of the aerosol particles has a considerable effect on the relation ~Pn,(i/~es) only when N> i 
and Re,<2. 
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THE PROBLEM OF THE FILLING OF A LIMITED VOLUME BY A 
VISCOUS HEAT-CONDUCTING GAS* 

S.YA. BELOV 

A system of differential equations, the solution of which describes the one-dimensional 
motion of a viscous heat-conducting ideal polytropic gas is investigated /l, 21. It is proved 
that the problem of the filling of a limited volume by a gas is uniquely solvable. An ex- 
istence theorem is established by the method of extending the solution that is local in time 
using global a priori estimates. A method of obtaining these estimates was described in /2/ 
for the equations of a viscous gas described in Lagrangian variables. The presence of pen- 
etrable walls mean% that the boundary conditions are non-uniform, and in mass Lagrangian 
variables the initial-boundary value problem is formulated in a region with curvilinear 
boundaries. This requires the development of a technique for proving the estimates. The 
correctness in time as a whole of the problem of the filling of a volume by a viscous gas has 
only been investigated previously for the more simple models, and for the system of equations 
of a heat-conducting gas in the case when the thermal conductivity depends in a special way 
on the temperature /3, 4/. Other formulations of the problem of the flows of a viscous gas 
in regions with penetrable boundaries were studied in /3-6,'. 

1. Formulation of the problem and fundamental results. The one-dimensional 
motion of a viscous ideal polytropic gas in mass Lagrangian coordinates is described by the 
following system of equations /l, 2/: 



Here u, P, 09 P are the velocity, density, absolute temperature, and pressure respectively - 
the required characteristics of the medium, 2 is the mass Lagrangian variable, t is the time, 
)L? CD, x are the viscosity, specific heat capacity, and thermal conductivity - positive con- 
stants, and R is the universal gas constant. 

We Will consider the motion of a viscous gas in a certain region of physical space, the 
left-hand boundary of which is fixed and penetrable (the gas constantly flows through it), and 
the right-hand boundary remains fixed , unpenetrable and thermally insulated. In a time T,O< 
T<= this process can be described in Lagrangian variables by the solution of the system 
of Eqs. fl.l), which is defined in the region Qr= ((z,t): O<~<T, s(t)<~<X) and satisfies the 
following conditions (X>O is the initial mass of the gas): 

u = k7 (z), p = (~~(2). fl= 8, (8) for t = 0, t E P 

u = 111 (0, p = pI (t), f3 = O1 (t) for z = d (f), t E [o, T] 

lb= $0 for t =x, E[O,T] 

(1.2) 

(1.3) 

(1.4) 

S(l) 5 - 
!! 
p1(qUl(r)dr, R = (0,X). Q, = (S(L). xj 

0 

In this case the following constraints are satisfied: 

u < m, < (P~,B~, P>, st, et) G sfo < - (i.5) 

4% and MO are arbitrary positive constants). 
We will formulate the main result, using the idea of a generalized solution and the 

symbols of functional spaces used in /2/. 

Theorem 1. Suppose the given problems are such that 

(uot 00) = CB+a 6% pa E @*a (n), (a, pL, e,) E ~‘+a’2 (0, T), 0 <a < I 

satisfy the conditions for matching of the first order of the initial and boundary functions 
and conditions (1.5). Then a unique classical solution of problem (l-l)-(1.4) exists, which 
has the properties 

(@ (.%% e (r, t)) E Cs+a*'+a's (Qr). P = C"fC"(Q& p,o, e>o 

If these problems belong to a wider class 

kc, pop 8,) E +k TV), (Y, pl, 6,) E w,l (0, T) 

satisfy the condition for matching of zeroth order, and condition (1.5) is satisfied, then a 
unique generalized solution exists such that the functions p and e are strictly positive and 
bounded. 

The existence of a unique classical solution over the whole time interval IO, Tl can be 
proved by extending the local solution using a priori estimates. After doing this, the 
generalized solution as a whole is obtained as the limit, defined in Qr. of the classical 
solutions of the problems t the smooth initial and boundary data of which approximate the 
specified functions in the corresponding norms. The proof of the uniqueness of the generalized 
solution does not differ from that given in /Z/ fox a uniform initial-boundary value problem. 

2. A ptiofi estimates. The constants which depend only on the data of problem (l-l)- 
(1.4) and T, will be denoted by N (with a subscript). 

Suppose the conditions of the first part of Theorem 1 are satisfied, and problem (l.l)- 
(1.4) has a classical solution, where O<p<m,O<O<=. Over a small time interval this is 
guaranteed by the local existence theorem. 

We will integrate the second equation of system (l.l), written in the form (p-l), = Pi, over 
the region Qt= {(z,t): O<z< t,x:E Q,). We obtain the following relation: 

s p-x(l, qds = f p;l (z)dr =I iv, YtE fO,TJ 

Q2 P 

We substitute a= ID+ +,P= u-1 into the equations of system fl.l), where 

U&I, t) = u,(t)N-' 
5 
p-'(E, t)dS 

s 

and we multiply the first equation by y,.the second by Se? (1 --u-;)! and the third by 
and we then integrate their sum over Qt. After simple reduction, by estimating the 
hand side of the relation obtained with respect to the Cauchy inequality, and using 
lemma, we can obtain the estimate 

42-u 

(1 - w-9, 
right- 
Gronwall's 

(2.2) 
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which enables us to prove the following auxiliary assertion. 

Lemma 1. The measured function a(t) is defined in the interval [O, Tl , such that O<a(t)< 
x and 

NI-' B P (a (0, t) < Ns-'3 vt E IO, T] (2.3) 

where N,and NI are the roots of the equation z-lnr--l= N,X-1. 
We will denote by t= t*(z), o(T)<+<0 the function that is the inverse z = s (#). Then 

t* (2) =o if 0<2<x. 
At any point (z,t)=&= (O<s<X,O$t< I'], following /7/, we can obtain 

p (2, f) = y (2, t, t)E (2, t, tp (2, t, t) 

t 
Y (2, t, r) = p (o (r), t) p-1 (a (r), t* (x)) exp I p-’ s 

t*(x) 

P (a Cd, r) drj 

Bb, t, r) = erp{p-' 5 [u (E, f* (z))- u (4, t)J d,} 
a(i) 

J(Z,trr)=p-‘(2,t+(~))+~-lH f e(I,T)Y(~,r,r)E(3,r,r)dT 
1’ w 

are functions defined in G=((z,t,r):O<tB T,s(t) <rd X, o<r<tl. 
At points of the curvilinear triangle Q1= ((5, t): O<t< T, s(t) <z<Oo) the following equations 

hold: 
p (5, t) = Y (z, t, tp (5, f, tv-1 (2, t, t* (2)) (2.5) 

p (2, t) = Y (2, t, t* (+))I3 (5, t, t* (z)V (5, t, t* (z)) (2.6) 

For an arbitrary function f (2, t), continuous in cr, we introduce the notation 

m,(t) = min f (2, 0, Mt (t) = max f (I, t) 
xet XEq 

By estimating the right-hand side of Eq.(2.4) from below and from above, and then the 
right-hand side of (2.5) from below and the right-hand side of (2.6) from above, we obtain 
the following assertion. 

Lemma 2. For any tE [O,Tl the following relations hold: 

After this all the estimates necessary to prove Theorem 1 are obtained using the scheme 
described in /2/. 

Note. In a similar way we can investigate the problem when both boundaries of the region 
are penetrable and there is a flow of liquid through them. 
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